DMSO are added to the wells containing test compound, and $250\,\mu\mathrm{L}$ to the Topotecan wells. $250\,\mu\mathrm{L}$ of media+0.5% DMSO is added to all remaining wells, into which the test compound (s) are serially diluted. By row, compound-containing media is replica plated (in duplicate) from the assay block to the corresponding cell plates. The cell plates are incubated for 72 hours at 37° C., 100% humidity, and 5% CO₂. [0556] Procedure: Day 4—MTS Addition and OD Reading: [0557] The plates are removed from the incubator and $40\,\mu$ l MTS/PMS is added to each well. Plates are then incubated for 120 minutes at 37° C., 100% humidity, 5% CO₂, followed by reading the ODs at 490 nm after a 5 second shaking cycle in a ninety-six well spectrophotometer. #### Data Analysis **[0558]** The normalized % of control (absorbance-background) is calculated and an XLfit is used to generate a dose-response curve from which the concentration of compound required to inhibit viability by 50% is determined. The compounds of the present invention show activity when tested by this method as described above. ### Example 23 ## **Enantiomer Separation** [0559] An enriched 3:1 R:S mixture of chromenone enantiomers was separated into its pure enantiomers by chiral chromatography with the following conditions: Column—Chiralpak AD, 250×4.6 mm (Diacel Inc.). Sample—22.5 mg/ml in 1:1 i-PrOH:hexanes. Conditions—40 min at isocratic 50% i-PrOH in Hexanes, (S)-enantiomer elutes at 18.35 min, (R)-enantiomer elutes at 26.87 min. The (R)-enantiomer was significantly more potent than the (S)-enantiomer of the compound of Example 2. ### Example 24 ## Monopolar Spindle Formation Following Application of a KSP Inhibitor [0560] Human tumor cells Skov-3 (ovarian) were plated in 96-well plates at densities of 4,000 cells per well, allowed to adhere for 24 hours, and treated with various concentrations of the chromenone compounds for 24 hours. Cells were fixed in 4% formaldehyde and stained with antitubulin antibodies (subsequently recognized using fluorescently-labeled secondary antibody) and Hoechst dye (which stains DNA). [0561] Visual inspection revealed that the compounds caused cell cycle arrest in the prometaphase stage of mitosis. DNA was condensed and spindle formation had initiated, but arrested cells uniformly displayed monopolar spindles, indicating that there was an inhibition of spindle pole body separation. Microinjection of anti-KSP antibodies also causes mitotic arrest with arrested cells displaying monopolar spindles. ### Example 25 ## Inhibition of Cellular Proliferation in Tumor Cell Lines Treated with KSP Inhibitors [0562] Cells were plated in 96-well plates at densities from 1000-2500 cells/well of a 96-well plate and allowed to adhere/grow for 24 hours. They were then treated with vari- ous concentrations of drug for 48 hours. The time at which compounds are added is considered $\rm T_0$. A tetrazolium-based assay using the reagent 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) (U.S. Pat. No. 5,185,450) (see Promega product catalog #G3580, CellTiter 96® AQ $_{ueous}$ One Solution Cell Proliferation Assay) was used to determine the number of viable cells at $\rm T_0$ and the number of cells remaining after 48 hours compound exposure. The number of viable cells at the time of drug addition, allowing for calculation of growth inhibition. [0563] The growth over 48 hours of cells in control wells that had been treated with vehicle only (0.25% DMSO) is considered 100% growth and the growth of cells in wells with compounds is compared to this. [0564] A $\rm Gi_{50}$ was calculated by plotting the concentration of compound in μM vs the percentage of cell growth in treated wells. The $\rm Gi_{50}$ calculated for the compounds is the estimated concentration at which growth is inhibited by 50% compared to control, i.e., the concentration at which: $$100 \times [(\mathrm{Treated_{48}} - T_0)/(\mathrm{Control_{48}} - T_0)] = 50$$ wherein Treated₄₈ is the value at 48 hours for the treated cells and Control₄₈ is the value at 48 hours for the control population [0565] All concentrations of compounds are tested in duplicate and controls are averaged over 12 wells. A very similar 96-well plate layout and Gi₅₀ calculation scheme is used by the National Cancer Institute (see Monks, et al., J. Natl. Cancer Inst. 83:757-766 (1991)). However, the method by which the National Cancer Institute quantitates cell number does not use MTS, but instead employs alternative methods. [0566] Compounds of Examples 1-13 above inhibited cell proliferation in human ovarian tumor cell lines (SKOV-3). #### Example 26 # Calculation of IC₅₀ [0567] Measurement of a compound's IC_{50} for KSP activity uses an ATPase assay. The following solutions are used: Solution 1 consists of 3 mM phosphoenolpyruvate potassium salt (Sigma P-7127), 2 mM ATP (Sigma A-3377), 1 mM IDTT (Sigma D-9779), 5 μM paclitaxel (Sigma T-7402), 10 ppm antifoam 289 (Sigma A-8436), 25 mM Pipes/KOH pH 6.8 (Sigma P6757), 2 mM MgCl2 (VWR JT400301), and 1 mM EGTA (Sigma E3889). Solution 2 consists of 1 mM NADH (Sigma N8129), 0.2 mg/ml BSA (Sigma A7906), pyruvate kinase 7 U/ml, L-lactate dehydrogenase 10 U/ml (Sigma P0294), 100 nM KSP motor domain, 50 µg/ml microtubules, 1 mM DTT (Sigma D9779), 5 µM paclitaxel (Sigma T-7402), 10 ppm antifoam 289 (Sigma A-8436), 25 mM Pipes/KOH pH 6.8 (Sigma P6757), 2 mM MgCl2 (VWR JT4003-01), and 1 mM EGTA (Sigma E3889). Serial dilutions (8-12 two-fold dilutions) of the compound are made in a 96-well microtiter plate (Corning Costar 3695) using Solution 1. Following serial dilution each well has 50 µl of Solution 1. The reaction is started by adding 50 µl of solution 2 to each well. This may be done with a multichannel pipettor either manually or with automated liquid handling devices. The microtiter plate is then transferred to a microplate absorbance reader and multiple absorbance readings at 340 nm are taken for each well in a kinetic mode. The observed rate of change, which is proportional to the ATPase rate, is then